Neuroprotection in a rabbit model of intraventricular haemorrhage by cyclooxygenase-2, prostanoid receptor-1 or tumour necrosis factor-alpha inhibition.
نویسندگان
چکیده
Intraventricular haemorrhage is a major complication of prematurity that results in neurological dysfunctions, including cerebral palsy and cognitive deficits. No therapeutic options are currently available to limit the catastrophic brain damage initiated by the development of intraventricular haemorrhage. As intraventricular haemorrhage leads to an inflammatory response, we asked whether cyclooxygenase-2, its derivative prostaglandin E2, prostanoid receptors and pro-inflammatory cytokines were elevated in intraventricular haemorrhage; whether their suppression would confer neuroprotection; and determined how cyclooxygenase-2 and cytokines were mechanistically-linked. To this end, we used our rabbit model of intraventricular haemorrhage where premature pups, delivered by Caesarian section, were treated with intraperitoneal glycerol at 2 h of age to induce haemorrhage. Intraventricular haemorrhage was diagnosed by head ultrasound at 6 h of age. The pups with intraventricular haemorrhage were treated with inhibitors of cyclooxygenase-2, prostanoid receptor-1 or tumour necrosis factor-α; and cell-infiltration, cell-death and gliosis were compared between treated-pups and vehicle-treated controls during the first 3 days of life. Neurobehavioural performance, myelination and gliosis were assessed in pups treated with cyclooxygenase-2 inhibitor compared to controls at Day 14. We found that both protein and messenger RNA expression of cyclooxygenase-2, prostaglandin E2, prostanoid receptor-1, tumour necrosis factor-α and interleukin-1β were consistently higher in the forebrain of pups with intraventricular haemorrhage relative to pups without intraventricular haemorrhage. However, cyclooxygenase-1 and prostanoid receptor 2-4 levels were comparable in pups with and without intraventricular haemorrhage. Cyclooxygenase-2, prostanoid receptor-1 or tumour necrosis factor-α inhibition reduced inflammatory cell infiltration, apoptosis, neuronal degeneration and gliosis around the ventricles of pups with intraventricular haemorrhage. Importantly, cyclooxygenase-2 inhibition alleviated neurological impairment, improved myelination and reduced gliosis at 2 weeks of age. Cyclooxygenase-2 or prostanoid receptor-1 inhibition reduced tumour necrosis factor-α level, but not interleukin-1β. Conversely, tumour necrosis factor-α antagonism did not affect cyclooxygenase-2 expression. Hence, prostanoid receptor-1 and tumour necrosis factor-α are downstream to cyclooxygenase-2 in the inflammatory cascade induced by intraventricular haemorrhage, and cyclooxygenase-2-inhibition or suppression of downstream molecules--prostanoid receptor-1 or tumour necrosis factor-α--might be a viable neuroprotective strategy for minimizing brain damage in premature infants with intraventricular haemorrhage.
منابع مشابه
Release of tumor necrosis factor-alpha and prostanoids in whole blood cultures after in vivo exposure to low-dose aspirin.
BACKGROUND The preventive effect of low-dose aspirin in cardiovascular disease is generally attributed to its antiplatelet action caused by differential inhibition of platelet cyclooxygenase-1. However, there is evidence that aspirin also affects release of inflammatory cytokines, including tumor necrosis factor-alpha (TNF-alpha). It is not known whether this is caused by direct action on the c...
متن کاملPurinergic Signaling Induces Cyclooxygenase-1-Dependent Prostanoid Synthesis in Microglia: Roles in the Outcome of Excitotoxic Brain Injury
Cyclooxygenases (COX) are prostanoid synthesizing enzymes constitutively expressed in the brain that contribute to excitotoxic neuronal cell death. While the neurotoxic role of COX-2 is well established and has been linked to prostaglandin E(2) synthesis, the role of COX-1 is not clearly understood. In a model of N-Methyl-D-aspartic acid (NMDA) induced excitotoxicity in the mouse cerebral corte...
متن کاملRegulation of cytokine expression in human plasmacytoid dendritic cells by prostaglandin I2 analogues.
Plasmacytoid dendritic cells (pDCs) are critical in controlling adaptive immunity, but the mechanisms governing cytokine expression remain incompletely defined. Analogues of prostaglandin (PG)I(2), such as iloprost, can modulate functions of myeloid dendritic cells, but their involvement in the regulation of human pDCs remains unknown. To this end, the regulatory role of PGI(2) analogues on cyt...
متن کاملInterleukin-1beta-induced mucin production in human airway epithelium is mediated by cyclooxygenase-2, prostaglandin E2 receptors, and cyclic AMP-protein kinase A signaling.
We reported recently that interleukin (IL)-1beta exposure resulted in a prolonged increase in MUC5AC mucin production in normal, well differentiated, human tracheobronchial epithelial (NHTBE) cell cultures, without significantly increasing MUC5AC mRNA (Am J Physiol 286:L320-L330, 2004). The goal of the present study was to elucidate the signaling pathways involved in IL-1beta-induced MUC5AC pro...
متن کاملCyclooxygenase-2 is required for tumor necrosis factor-alpha- and angiotensin II-mediated proliferation of vascular smooth muscle cells.
Tumor necrosis factor-alpha (TNF-alpha) and angiotensin II (Ang II) induced a transient increase in vascular smooth muscle cell (VSMC) cyclooxygenase-2 (COX-2) mRNA accumulation, without affecting COX-1 mRNA levels. The kinetics of COX-2 mRNA accumulation were similar in VSMCs challenged with either TNF-alpha or Ang II; mRNA accumulation peaked at 2 hours and decreased to control levels by appr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain : a journal of neurology
دوره 133 Pt 8 شماره
صفحات -
تاریخ انتشار 2010